If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-100x+125=0
a = 1; b = -100; c = +125;
Δ = b2-4ac
Δ = -1002-4·1·125
Δ = 9500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9500}=\sqrt{100*95}=\sqrt{100}*\sqrt{95}=10\sqrt{95}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-10\sqrt{95}}{2*1}=\frac{100-10\sqrt{95}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+10\sqrt{95}}{2*1}=\frac{100+10\sqrt{95}}{2} $
| 3x+15=27+x | | 3x+1x5x-3=4x+2x2x | | (2x+3)+16=1 | | 2x+8=-6x+48 | | 36+8x+10x=180 | | 4(u-6)-1=31 | | 9x+8x=102 | | 4(8x-1)=32x+19 | | 3(z−5)=24 | | 6=-8x+3(x-3) | | 3y+10=y | | b/3–5=6 | | -24=-1/2(10+4x | | 3(4x-6)=6x-4 | | 2x+3x-3=2x+18 | | 8(8x-4)=-416 | | 35x8=43-7 | | -2=1x²+6 | | 4-7p+5=-16 | | h/0.5(0.5)=7/0.5 | | 2x-4/8+5=6 | | 37=r-6 | | 0.75(2x–2)+2=8 | | 4a+10=45 | | 3i+15=3 | | f+1/12=1/12 | | 7x-13=1x+8 | | x=2/3(14) | | 3(2n-2)=2(3n-3) | | -2(3x-4)=-2x+4 | | 7=j+61/3 | | -7t-15=34 |